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Abstract
The integral of the Wigner function of a quantum-mechanical system over a
region or its boundary in the classical phase plane, is called a quasiprobability
integral. Unlike a true probability integral, its value may lie outside the
interval [0, 1]. It is characterized by a corresponding selfadjoint operator,
to be called a region or contour operator as appropriate, which is determined
by the characteristic function of that region or contour. The spectral problem
is studied for commuting families of region and contour operators associated
with concentric discs and circles of given radius a. Their respective eigenvalues
are determined as functions of a, in terms of the Gauss–Laguerre polynomials.
These polynomials provide a basis of vectors in a Hilbert space carrying the
positive discrete series representation of the algebra su(1, 1) ≈ so(2, 1). The
explicit relation between the spectra of operators associated with discs and
circles with proportional radii, is given in terms of the discrete variable Meixner
polynomials.

PACS numbers: 03.65.Fd, 02.30.Gp, 02.20.Sv, 42.50.Xa

1. Introduction

The problem of bounds on integrals of the Wigner quasidistribution function [1] over some
subregion or contour of the phase plane for one-dimensional quantum systems, has been
introduced and studied as a theoretical issue [2, 3], with applications in the field of quantum
tomography (see e.g. [4, 5]). For a classical (true) probability distribution, such an integral
would always have a value in the unit interval [0, 1], but in the quantum case, the upper
and lower bounds vary from region to region, and may lie outside the interval [0, 1]. The
relevance of such studies to quantum tomography is that these bounds define checks on the
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accuracy of experimental determinations of Wigner functions. It has been shown [2, 3]
that, for a given region or contour, the bounds are determined by the maximal and minimal
eigenvalues of a corresponding Hermitian operator, to be called the region operator or contour
operator, respectively, acting in the space of square integrable (wave)functions of the quantum
systems in question. Furthermore, the matrix element of such an operator K between such
(wave)functions ψ gives the value of the non-positive-definite quasiprobability integral (QPI),
formed by the integral of the Wigner function corresponding to ψ , over the region or contour
that determines the operator. Attention is therefore focussed on the spectra of various region
and contour operators.

In what follows, starting from regions and their boundaries in the phase plane of a classical
mechanical system, we use their respective characteristic functions to introduce corresponding
region and contour operators. Specifically, we introduce the family of commuting operators
KD(a),KC(a), associated with a disc and a circle respectively, with radius a, centred at the
origin of the phase plane. These operators are diagonal in the Fock space of the number
states of the quantum harmonic oscillator. Their spectra, which determine the upper and
lower bounds on the corresponding QPI, show a remarkable richness of structure. We show
that these spectra, as functions of the radius a, are determined by the Gauss–Laguerre (GL)
functions [6], acting as basis functions in vector spaces that carry the d = 1/2 positive discrete
series representation of the Lie algebra so(2, 1) ≈ su(1, 1), involving two different differential
operator realizations. Further, for operators KD,C(ξa) that refer to discs/circles with different
radii ξa, ξ ∈ R, we find their eigenvalues are determined by the GL basis functions of scaled
argument ξa, which are in turn expressed as linear combination of the GL basis of argument
a, with the Meixner discrete polynomials as expansion coefficients.

2. Quantum-mechanical setting

A one-dimensional quantum system is described by means of the Heisenberg–Weyl (HW)

algebra h1, with generators {1, b, b†} satisfying the canonical commutation relations bb† −
b†b ≡ [b, b†] = 1, [b, 1] = 0 = [b†, 1]. In addition to the creation operator b†, annihilation
operator b and unit operator 1, we also use the number operator N = b†b, which satisfies the
relations [N, b] = −b, [N, b†] = b†. An irreducible infinite-dimensional representation ν of
h1 is carried by the so-called Fock space F � l2(Z+) = span{en|n ∈ Z+}, with

ν(b)en = √
nen−1 ν(b†)en = √

n + 1en+1 ν(1)en = en

ν(N)en = nen ν(�)en = (−1)nen

(1)

where we have also introduced the parity operator � for later use. We adopt the convention
to denote an abstract element and its representative by the same symbol. Then, in the
representation ν, b† is the Hermitian conjugate of b, i.e. 〈ψ, bϕ〉F = 〈b†ψ, ϕ〉F , as a
consequence of the orthonormality relations 〈em, en〉F = δmn. Now we introduce the bounded
displacement operators

D(α) = exp(α∗b − αb†) : C −→ B(F). (2)

Here α is a complex number and α∗ its complex conjugate. The displacement operators define
a projective representation of the Abelian group of addition in the complex plane:

D(0) = 1 D(α)† = D(−α) (3)

D(α)D(β) = D(α + β) eiα×β (4)

with α, β ∈ C ≡ 	 and α × β = Re α Im β − Im α Re β. Note that 	 is endowed with the
geometric structure of a symplectic space and physically is identified with the classical phase
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space of the quantum-mechanical problem dealt with. The family of Wigner operators defined
as {Ŵ (α) = D(α)�D(α)† |α ∈ 	} provides a continously parametrized operator basis for the
Hilbert space S(F ) of Hilbert–Schmidt operators on F due to the relation

〈Ŵ (α), Ŵ (β)〉S ≡ Tr[Ŵ (α)†Ŵ(β)] = δ(α − β). (5)

Given Â, B̂ ∈ S(F ), so that 〈Â, Â〉S < ∞ etc, then

Â =
∫

	

〈Â, Ŵ (α)〉SŴ (α) d2α ≡
∫

	

A(α)Ŵ (α) d2α (6)

and

〈Â, B̂〉S =
∫

	

A(α)∗B(α) d2α (7)

where d2α = d(Re α) d(Im α)/π. Of special interest are the density operators ρ ∈ S(F ),
which comprise the convex set D of operators satisfying ρ† = ρ, ρ > 0 and Tr[ρ] = 1.
When expanded in the Wigner operator basis, a density operator furnishes as an expansion
coefficient, the corresponding Wigner function: Wρ(α) ≡ 〈ρ, Ŵ (α)〉S . Now (7) gives

Tr(ρÂ) =
∫

	

A(α)Wρ(α) d2α (8)

which is interpreted as the expectation value of the observable represented by the operator
Â, or function A(α), when the system is in the state described by the density operator ρ, or
by the Wigner function Wρ . The set P of ‘pure state’ density operators has the additional
projection operator property, i.e. ρ2 = ρ, and the elements of P are the extremal points of D,
i.e. D = hull(P ). For any ψ ∈ F , we define ψ(x) = ∑

n〈en, ψ〉F Hn(x) e−x2/2, where Hn is
the (normalized) Hermite polynomial [6], so that

〈ψ1, ψ2〉F =
∫

R

ψ1(x)∗ψ2(x) dx. (9)

Now if ρ ∈ P projects onto ψ ∈ F , the Wigner function corresponding to ρ and ψ takes the
form

Wψ(q, p) = 1

2π

∫
R

ψ(q + x/2)∗ψ(q − x/2) eipx dx (10)

where q = Re α, p = Im α. The Wigner function was introduced as analogous to a probability
density in an exploration of the extent to which quantum mechanics can be cast into the
form of a true statistical theory [1, 7, 8]. As is well known and easy to show, Wρ(q, p)

corresponding to some density operator ρ is not in general positive everywhere. It is
consequently called a quasiprobability function, and some of its previously known bounds,
such as −(1/π) � Wρ(q, p) � (1/π), as well as some recently found ones [2, 3], can be used
to help quantify its quasiprobability-density character.

3. Quasiprobability integrals, region operators and contour operators

Let χ
S
(α) denote the characteristic function of a given region S in the phase space 	, and let

χ̂
S

denote the corresponding operator given by (6), with χ
S
(α) replacing A(α) in the RHS. We

refer to χ̂
S

as the region operator corresponding to S. If S is compact, χ̂
S

is bounded, with a
discrete spectrum.

Considering (8) in the case Â = χ̂
S
, we see that the LHS is the expectation value of χ̂

S
, in

the state ρ, while the RHS is the QPI on S, namely the integral of Wρ over the support of χ
S
.
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It follows that the QPI on S is bounded above and below by the greatest and least
eigenvalues of χ̂

S
, respectively, and also that these bounds are attained when ρ projects onto

the corresponding eigenfunctions of χ̂
S
.

A region of special interest is the disc of radius a, centred on the origin, with region
operator the disc operator χ̂

S
≡ KD(a). It is known [2] that KD(a) commutes with N for

every a. This may be viewed as a consequence of the fact that N generates transformations
of 	 which leave every such disc invariant. Furthermore, the eigenvalue of KD(a) on the
eigenvector en of N has been found to be given by means of the Laguerre polynomials Ln(x)

as

λD
n (a) = 2(−1)n

∫ a

0
Ln(2x2) e−x2

x dx n = 0, 1, 2, . . . . (11)

Generalizing the idea of a region operator, we define [3] for every suitably smooth
contour C in 	, a contour operator χ̂

C
using (6), replacing A(α) in the RHS by the generalized

characteristic function χ
C
(α) of C. Here χ

C
(α) is defined by the property that, for every smooth

function F(α) on 	,∫
	

F (α)χ
C
(α) d2α =

∫
C

F(α) dl (12)

where dl is the element of length along C. We can write

χ̂
S

=
∫

S

Ŵ (α) d2α χ̂
C

=
∫

C

Ŵ (α) dl. (13)

In the case that C is the circular boundary of the disc of radius a, centred on the origin, we can
see that the circle operator χ̂

C
≡ KC(a) is given by

KC(a) = lim
ε→0

1

ε
(KD(a + ε) − KD(a)). (14)

Furthermore, it can now be seen that KC(a) also commutes with N, and indeed with each
KD(b), for every value of a and b, and that on {en}n∈Z+,KC(a) has the eigenvalue

λC
n (a) = d

da
λD

n (a) = 2(−1)nLn(2a2) e−a2
a n = 0, 1, 2, . . . . (15)

4. Results

Our main object now is to clarify the relation between the spectra (11) and (15) of commuting
concentric circle and disc operators for various radii.

We begin with some group theoretical preliminaries: let g denote the Lie algebra su(1, 1)

with generators {S0, S±} in some representation, subject to relations

[S0, S±] = ±S± [S+, S−] = −2S0 (16)

together with S
†
0 = S0 and S

†
± = S∓. The central element C = S2

0 − 1
2S+S− + S−S+ belongs

to the enveloping algebra U(su(1, 1)). Consider in particular the positive discrete series
representation D+

k labelled by a positive integer or half-integer k, and carried by a linear space
H with formal vectors

{
d(k)

n

}
n∈Z+

and actions of the operators [9]

S±d(k)
n = µ±d

(k)
n±1 S0d

(k)
n = (k + n)d(k)

n Cd(k)
n = k(k − 1)d(k)

n (17)

with µ− = µ−(n) = [n(2k + n − 1)]
1
2 , µ+ = µ−(n + 1). We will make use of two different

realizations of D+
k , called the π-realization and σ -realization below. In each, the generators
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are realized by appropriate differential operators acting on representation spaces isomorphic
to l2(Z+).

π-Realization. For M real nonzero, the central element and the generators of the realization
π : g −→ End(Hπ) of D+

k are denoted by L(M) = π(C),L
(M)
0 = π(S0), L

(M)
± = π(S±),

and act on the Hilbert space Hπ � L2([0,∞), dr) = span
{
u

(M)
k,l (r)

∣∣M ∈ R, k ∈ Z+, l ∈{− 1
2 , 0, 1

2 , 1, . . .
}
, r ∈ (0,∞)

}
. The basis vectors are [10]

u
(M)

k,l (r) = (−1)k

(
2
√

Mk!

	
(
k + l + 3

2

)
) 1

2

(
√

Mr)l+1 e− M
2 r2

L
l+ 1

2
k (Mr2) (18)

with Lb
a(x) the associated Laguerre polynomial [6]. In this representation module the

generators are realized by differential operators

L
(M)
0 = 1

4M

[
− d2

dr2
+

l(l + 1)

r2

]
+

M

4
r2 (19)

L
(M)
± = − 1

4M

[
− d2

dr2
+

l(l + 1)

r2

]
+

M

4
r2 ∓ 1

2

(
r

d

dr
+

1

2

)
. (20)

Let d = 1
2

(
l + 3

2

)
, then the basis vectors of Hπ are eigenvectors of the central element with

eigenvalues determining the representation, i.e.

L(M)u
(M)
k,l (r) = d(d − 1)u

(M)
k,l (r) (21)

while the action of the remaining generators on the basis vectors reads

L
(M)
± u

(M)
k,l (r) = µ±u

(M)
k±1,l (r) L

(M)
0 u

(M)
k,l (r) = (d + k)u

(M)
k,l (r). (22)

σ -Realization. Here the central element and the generators of the realization σ : g −→
End(Hσ ) of D+

k are denoted by J = σ(C), J0 = σ(S0), J± = σ(S±), and act on the Hilbert
space Hσ � L2([0,∞), rw dr) = span

{
e(k)
m (r)

∣∣k ∈ R+,m ∈ Z+, r ∈ (0,∞)
}
. The basis

vectors are [11]

e(k)
m (r) = 2W

√
wm!

	(2k + m)
exp(−rw)(2rw)k−W L(2k−1)

m (2rw) (23)

with Lb
a(x) the associated Laguerre polynomial and W = w+1

2w
for w � 1. In this representation

module the generators are realized by differential operators

J0 = 1
2

(
w−2r2−wp2

r + ξr−w + rw
)

(24)

J1 = 1
2

(
w−2r2−wp2

r − ξr−w − rw
)

(25)

J2 = w−1
(
rpr − i

2
(w − 1)

)
(26)

where pr = −i(d/dr + 1/r), ξ = k(k − 1) − W(W − 1), and the Hermitian generators
J1 = 1

2 (J+ − J−) and J2 = 1
2i (J+ − J−) have been introduced.

The basis vectors of Hσ are eigenvectors of the central element with eigenvalues
determining the representation, i.e.

J e(k)
n (r) = k(k − 1)e(k)

n (r) (27)

while the action of the rest of generators on the basis vectors reads

J±e(k)
n (r) = µ±e

(k)
n±1(r) J0e

(k)
n (r) = (n + k)e(k)

n (r). (28)
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To make connection with the spectrum of the circle operator KC(a) we first observe
that for basis elements of Hπ and Hσ , the relation 〈f (a), g(a)〉Hσ

= 〈af (a), ag(a)〉Hπ
holds

among innner products. The choice of values w = 2, i.e. W = 3/4, leads to the relation

ae
( l

2 + 3
4 )

m (a) = u
(2)

(m,l)(a), among the basis vectors. Then we identify the eigenvalues of KC(a)

with the basis vectors as follows:

λC
n (a) = a

√
ae

( 1
2 )

n (a) = √
au

(2)

n,− 1
2
(a). (29)

Proposition. Let ξ ∈ R+, then the spectra S
C,D
ξ = {

λC,D
n (ξa)

∣∣a ∈ R+, n ∈ Z+
}
, and

S
C,D
1 = {

λC,D
n (a)

∣∣a ∈ R+, n ∈ Z+
}
, of the respective circle/disc operators KC,D(ξa) and

KC,D(a), for concentric circles/discs of radii ξa and a, are related by means of discrete
Meixner polynomials

{
Mn(m, 2k; c2)

∣∣m,n ∈ Z+, k = 0, 1
2 , 1, . . .

}
as follows:

λC,D
m (ξa) = Nm

∞∑
n=0

cnMn(m, 1; c2)λC,D
n (a) (30)

where the coefficients Nm, c depend on ξ.

Proof. We start by first stating the following, independent of any realization of the eigenvalue
problem: let Xc = −(c + 1/c)S0 + S+ + S−, 0 < c < 1, and consider D(+)

k , the discrete series
representation of g carried by a space with basis elements

{
d(k)

n

}
n∈Z+

. Then

Xcv
(k)
m = (c − 1/c)(k + m)v(k)

m m ∈ N, k ∈ R+ (31)

with

v(k)
m =

∞∑
n=0

√
(2k)n

n!
cnMn(m, 2k; c2)d(k)

n (32)

where (α)n = 	(α + n)/	(α) is the Pochhammer symbol [6], and the discrete variable
Meixner polynomials are defined in terms of the hypergeometric series [12]:

Mn(m, 2k; c2) = 2F1

[−n,−m

2k
; 1 − 1/c

]
. (33)

(The history of the spectral theory of operators like Xc is rich and interesting in
itself, for it illuminates the relation of special functions with the representation theory
of su(1, 1), and so provides a mathematical framework for our group theoretical study
of region operators. Our π-realization is based on work in [10]. In [13], the spectral
problem of the operator H = 2J0 − J+ − J− in the positive discrete series representation of
su(1, 1) was shown to be related to generalized Laguerre polynomials. Following this, the
analogous problem was addressed [14] for H = σJ0 − J+ − J−, (σ ∈ R), and earlier, for
a particular representation, in [15]. The explicit relation to Meixner polynomials in some
other realizations (cf our σ -realization) was further studied in [11] for the general operator
H = −(σ + 1/c)J0 − J+ − J− (0 < σ < 1).)

Since by comparing (17) and (31) we see that operators S0 and Xc are isospectral apart
from the factor (c − 1/c), so we expect their formal eigenvectors to be related by a unitary
transformation. To determine this tranformation we first use the Baker–Champell–Hausdorff
formula [16] to rewrite Xc in the form

Xc = (c − 1/c) eirS2S0 e−irS2 (34)

where er = 1+c
1−c

. Its action on the eigenvector v(k)
m then yields

S0 e−irS2v(k)
m = (k + m) e−irS2v(k)

m (35)
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which leads to identifying eigenvectors of S0 and Xc up to the normalization coefficient Nm

eirS2d(k)
m = Nmv(k)

m = Nm

∞∑
n=0

〈
d(k)

n , eirS2d(k)
m

〉
d(k)

n . (36)

The right-hand side of (36) together with (32) yields

eirS2d(k)
m = φmNm

∞∑
n=0

√
(2k)n

n!
cnMn(m, 2k; c2)d(k)

n (37)

where |φm| = 1.

We first observe that in order to scale the argument of eigenvalues we need the dilation
operator exp

(
a d

da

)
and that our choice of π and σ -realizations are such that their respective

operators L2 = 1
2 (L+ − L−) = − 1

2

(
a d

da
+ 1

2

)
and J2 = 1

2i (J+ − J−) = 1
2

(
a d

da
+ 3

2

)
are linear

combination of a d
da

, hence exp(−rL2) and exp(irJ2), acting on a function of a, take the
respective forms

exp(−rL2)f (a) = e
r
4 f (e

r
2 a) and exp(irJ2)f (a) = e

3r
4 f (e

r
2 a). (38)

From this equation and the identification (29), we obtain

exp
(
−rL2 +

r

2

) 1

a
u

(2)

n,− 1
2
(a) = exp(irJ2)e

( 1
2 )

n (a) (39)

and multiplication of both sides by a
√

a yields, with ξ = e
r
2 ,

λC
n (ξa) = ξa

√
ξae

( 1
2 )

n (ξa) =
√

ξau
(2)

n,− 1
2
(ξa). (40)

Finally, by means of (36) and (37) and their respective expressions in π-, σ -realizations,
and with c = er−1

er +1 and Nm = φm(1 − c2)
1
2 cm, where specifically for the π-realization,

φm = (−1)m, we obtain

λC
m(ξa) = Nm

∞∑
n=0

cnMn(m, 1; c2)λC
n (a). (41)

From this relation and the spectral decomposition of the circle operator in the number
state basis, we obtain that

KC(e
r
2 a) =

∞∑
m=0

λC
m(e

r
2 a)eme†m =

∞∑
m=0

(
Nm

∞∑
n=0

cnMn(m, 1; c2)λC
n (a)

)
eme†m (42)

or that

KC(e
r
2 a) = exp

(
−rL2 +

r

2

)
KC(a) = exp(irJ2)KC(a). (43)

In view of the simple relation between circle and disc operator spectra, we are led to
integrate the scaled eigenvalues of (41) in order to get analoguous equations for the eigenvalues
of the disc operator, namely

λD
m(ξa) =

∫ a

0
λC

m(ξx) dx = Nm

∞∑
n=0

cnMn(m, 1; c2)

∫ a

0
λC

n (x) dx

= Nm

∞∑
n=0

cnMn(m, 1; c2)λD
n (a). (44)

�

Below we give a diagrammatic form of the content of the above proposition: the two
ladders of spectra for the disc and circle operators with proportional radii λC,D

n (a) and
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λC,D
n (ξa) respectively, are shown to be related by means of coefficents determined by discrete

Meixner polynomials, that are given as matrix elements of the dilation operator in the Gauss–
Laguerre basis functions that carry the positive discrete series representation of the algebra
su(1, 1) ≈ so(2, 1). Also in each spectral ladder the step operators of this algebra J± or L±
operate to create and annihilate eigenvalues of the respective region or contour operators, so
that we have

...
...

...

J−, L− ↓↑ J+, L+ J+, L+ ↑↓ J−, L−

λ
C,D
2 (ξa)

−−−−−−−−→
Meixner pol. λ

C,D
2 (a)

J−, L− ↓↑ J+, L+ J+, L+ ↑↓ J−, L−

λ
C,D
1 (ξa)

−−−−−−−−→
Meixner pol. λ

C,D
1 (a)

J−, L− ↓↑ J+, L+ J+, L+ ↑↓ J−, L−

λ
C,D
0 (ξa)

−−−−−−−−→
Meixner pol. λ

C,D
0 (a)

5. Conclusions

The spectra of operators associated with integrals of Wigner functions over regions and
contours of classical phase space can have interesting structural properties. These operators
form a new type of quantum-mechanical observables, with important mathematical and
physical meanings. In the case of discs and their boundaries, their eigenvalues, which carry
the meaning of the QPI formed by Wigner functions over the corresponding discs and circles,
behave as basis functions of a representation space of a Lie algebra of generators. These
generators can be used to step up and down the ladder of these eigenvalues. We emphasize
this unusual feature: the representation is defined on the spectrum of eigenvalues, not on the
underlying function space on which the region or contour operators act.

Because of their intrinsic interest, as well as their potential importance in quantum
tomography, it is important to study further the algebraic and functional properties of
such operators. A number of open research problems can be mentioned: development of
tranformation theory of region and contour operators under maps that induce simple geometric
transformations on their associated region or contour of support; temporal evolution equations
and behaviour of such operators under Hamiltonian dynamics of their associated quantum
systems; clarification of their mathematical relation to covariant phase operators coming from
the problem of quantum-mechanical angular operators (see e.g. [17]); addition rules for region
and contour operators associated with many-body quantum systems and their relation to
geometric manifestations of quantum entanglement; and finally, the extension of the concept
of QPI, region and contour operators, and their spectral problems to phase spaces other than
the classical phase plane, such as the sphere and the continuous and discretized torus. We
hope to take up some of these problems in future work.
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